Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895185

RESUMO

Colorectal cancer affects the colon or rectum and is a common global health issue, with 1.1 million new cases occurring yearly. The study aimed to identify gene signatures for the early detection of CRC using machine learning (ML) algorithms utilizing gene expression data. The TCGA-CRC and GSE50760 datasets were pre-processed and subjected to feature selection using the LASSO method in combination with five ML algorithms: Adaboost, Random Forest (RF), Logistic Regression (LR), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM). The important features were further analyzed for gene expression, correlation, and survival analyses. Validation of the external dataset GSE142279 was also performed. The RF model had the best classification accuracy for both datasets. A feature selection process resulted in the identification of 12 candidate genes, which were subsequently reduced to 3 (CA2, CA7, and ITM2C) through gene expression and correlation analyses. These three genes achieved 100% accuracy in an external dataset. The AUC values for these genes were 99.24%, 100%, and 99.5%, respectively. The survival analysis showed a significant logrank p-value of 0.044 for the final gene signatures. The analysis of tumor immunocyte infiltration showed a weak correlation with the expression of the gene signatures. CA2, CA7, and ITM2C can serve as gene signatures for the early detection of CRC and may provide valuable information for prognostic and therapeutic decision making. Further research is needed to fully understand the potential of these genes in the context of CRC.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Humanos , Algoritmos , Teorema de Bayes , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Aprendizado de Máquina , RNA-Seq
2.
Curr Top Med Chem ; 23(30): 2821-2843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317918

RESUMO

Colorectal cancer (CRC) is a multifaceted and heterogeneous ailment that affects the colon or rectum of the digestive system. It is the second most commonly occurring form of cancer and ranks third in terms of mortality rate. The progression of CRC does not occur due to a single mutational event; rather, it is the result of the sequential and cumulative accumulation of mutations in key driver genes of signaling pathways. The most significant signaling pathways, which have oncogenic potential due to their deregulation, include Wnt/ß-catenin, Notch, TGF-ß, EGFR/MAPK, and PI3K/AKT pathways. Numerous drug target therapies have been developed to treat CRC using small molecule inhibitors, antibodies, or peptides. Although drug-targeted therapy is effective in most cases, the development of resistance mechanisms in CRC has raised questions about their efficacy. To overcome this issue, a novel approach to drug repurposing has come to light, which utilizes already FDA-approved drugs to treat CRC. This approach has shown some promising experimental results, making it a crucial avenue of research in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
3.
Sci Rep ; 13(1): 6413, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076536

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer type and accounts for nearly one million deaths worldwide. The CRC mRNA gene expression datasets from TCGA and GEO (GSE144259, GSE50760, and GSE87096) were analyzed to find the significant differentially expressed genes (DEGs). These significant genes were further processed for feature selection through boruta and the confirmed features of importance (genes) were subsequently used for ML-based prognostic classification model development. These genes were analyzed for survival and correlation analysis between final genes and infiltrated immunocytes. A total of 770 CRC samples were included having 78 normal and 692 tumor tissue samples. 170 significant DEGs were identified after DESeq2 analysis along with the topconfects R package. The 33 confirmed features of importance-based RF prognostic classification model have given accuracy, precision, recall, and f1-score of 100% with 0% standard deviation. The overall survival analysis had finalized GLP2R and VSTM2A genes that were significantly downregulated in tumor samples and had a strong correlation with immunocyte infiltration. The involvement of these genes in CRC prognosis was further confirmed on the basis of their biological function and literature analysis. The current findings indicate that GLP2R and VSTM2A may play a significant role in CRC progression and immune response suppression.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Prognóstico , Análise de Sobrevida , Neoplasias Colorretais/patologia , Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica
4.
Curr Neuropharmacol ; 21(4): 764-776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797613

RESUMO

Alzheimer's is a chronic neurodegenerative disease where amyloid-beta (Aß) plaques and neurofibrillary tangles are formed inside the brain. It is also characterized by progressive memory loss, depression, neuroinflammation, and derangement of other neurotransmitters. Due to its complex etiopathology, current drugs have failed to completely cure the disease. Natural compounds have been investigated as an alternative therapy for their ability to treat Alzheimer's disease (AD). Traditional herbs and formulations which are used in the Indian ayurvedic system are rich sources of antioxidant, anti-amyloidogenic, neuroprotective, and anti-inflammatory compounds. They promote quality of life by improving cognitive memory and rejuvenating brain functioning through neurogenesis. A rich knowledge base of traditional herbal plants (Turmeric, Gingko, Ashwagandha, Shankhpushpi, Giloy, Gotu kola, Garlic, Tulsi, Ginger, and Cinnamon) combined with modern science could suggest new functional leads for Alzheimer's drug discovery. In this article Ayurveda, the ancient Indian herbal medicine system based on multiple clinical and experimental, evidence have been reviewed for treating AD and improving brain functioning. This article presents a modern perspective on the herbs available in the ancient Indian medicine system as well as their possible mechanisms of action for AD treatment. The main objective of this research is to provide a systematic review of herbal drugs that are easily accessible and effective for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Qualidade de Vida , Fitoterapia
5.
BioTech (Basel) ; 11(4)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546908

RESUMO

Falcipain-2 (FP-2) is one of the main haemoglobinase of P. falciparum which is an important molecular target for the treatment of malaria. In this study, we have screened alkaloids to identify potential inhibitors against FP-2 since alkaloids possess great potential as anti-malarial agents. A total of 340 alkaloids were considered for the study using a series of computational pipelines. Initially, pharmacokinetics and toxicity risk assessment parameters were applied to screen compounds. Subsequently, molecular docking algorithms were utilised to understand the binding efficiency of alkaloids against FP-2. Further, oral toxicity prediction was done using the pkCSM tool, and 3D pharmacophore features were analysed using the PharmaGist server. Finally, MD simulation was performed for Artemisinin and the top 3 drug candidates (Noscapine, Reticuline, Aclidinium) based on docking scores to understand the functional impact of the complexes, followed by a binding site interaction residues study. Overall analysis suggests that Noscapine conceded good pharmacokinetics and oral bioavailability properties. Also, it showed better binding efficiency with FP-2 when compared to Artemisinin. Interestingly, structure alignment analysis with artemisinin revealed that Noscapine, Reticuline, and Aclidinium might possess similar biological action. Molecular dynamics and free energy calculations revealed that Noscapine could be a potent antimalarial agent targeting FP-2 that can be used for the treatment of malaria and need to be studied experimentally in the future.

6.
Sci Rep ; 11(1): 14304, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253750

RESUMO

Colorectal cancer (CRC) is a common cause of cancer-related deaths worldwide. The CRC mRNA gene expression dataset containing 644 CRC tumor and 51 normal samples from the cancer genome atlas (TCGA) was pre-processed to identify the significant differentially expressed genes (DEGs). Feature selection techniques Least absolute shrinkage and selection operator (LASSO) and Relief were used along with class balancing for obtaining features (genes) of high importance. The classification of the CRC dataset was done by ML algorithms namely, random forest (RF), K-nearest neighbour (KNN), and artificial neural networks (ANN). The significant DEGs were 2933, having 1832 upregulated and 1101 downregulated genes. The CRC gene expression dataset had 23,186 features. LASSO had performed better than Relief for classifying tumor and normal samples through ML algorithms namely RF, KNN, and ANN with an accuracy of 100%, while Relief had given 79.5%, 85.05%, and 100% respectively. Common features between LASSO and DEGs were 38, from them only 5 common genes namely, VSTM2A, NR5A2, TMEM236, GDLN, and ETFDH had shown statistically significant survival analysis. Functional review and analysis of the selected genes helped in downsizing the 5 genes to 2, which are VSTM2A and TMEM236. Differential expression of TMEM236 was statistically significant and was markedly reduced in the dataset which solicits appreciation for assessment as a novel biomarker for CRC diagnosis.


Assuntos
Neoplasias Colorretais/metabolismo , Aprendizado de Máquina , Algoritmos , Neoplasias Colorretais/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Redes Neurais de Computação
7.
Genomics ; 112(6): 5122-5128, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927010

RESUMO

Haemophilia is an X-linked genetic disorder in which A and B types are the most common that occur due to absence or lack of protein factors VIII and IX, respectively. Severity of the disease depends on mutation. Available Machine Learning (ML) methods that predict the mutational severity by using traditional encoding approaches, generally have high time complexity and compromised accuracy. In this study, Haemophilia 'A' patient mutation dataset containing 7784 mutations was processed by the proposed Position-Specific Mutation (PSM) and One-Hot Encoding (OHE) technique to predict the disease severity. The dataset processed by PSM and OHE methods was analyzed and trained for classification of mutation severity level using various ML algorithms. Surprisingly, PSM outperformed OHE, both in terms of time efficiency and accuracy, with training and prediction time improvement in the range of approximately 91 to 98% and 80 to 99% respectively. The severity prediction accuracy also improved by using PSM with different ML algorithms.


Assuntos
Hemofilia A/diagnóstico , Aprendizado de Máquina , Mutação , Hemofilia A/genética , Humanos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...